

Confidential Inference
Systems
Design principles and security risks
Version 1.0, June 2025

1

About Pattern Labs
Pattern Labs is an AI security company working to assess and mitigate risks in advanced AI
systems. Pattern Labs conducts research on security and policy for AI systems and
collaborates with AI labs, academia, industry, and governments.

About Anthropic
Anthropic is an AI safety and research company that creates reliable, interpretable, and
steerable AI systems. Anthropic’s flagship product is Claude, a large language model trusted
by millions of users worldwide.

2

https://patternlabs.co/
https://www.anthropic.com/

Contents
Overview

What is confidential computing, in the context of AI inference?
The confidentiality requirements
Meeting the requirements with confidential computing
Limitation of scope

The two aspects of confidential inference
The confidential data aspect
The confidential model aspect

Service provider guarantees
Hardware-based compute (CPU) and memory isolation
Secure cryptographic attestation of the running workload
Trusted Execution Environment (TEE)
Restricted operator access

Trusted execution environments with AI accelerators
First approach: Native support within the AI accelerator
Second approach: Bridging the CPU enclave to the accelerator

Components and their design principles
Confidential inference service
Model provisioning procedure
Enclave dev & build environment

Threat model, risks and attack scenarios
The confidential inference threat model
Systemic vs. introduced security risks
Systemic risks
Introduced risks

References

3

Overview
This whitepaper describes principles for designing a “confidential inference system” – a
system that securely uses confidential computing technologies to implement an AI model
inference service – typically used by generative AI applications, such as chat assistants and
image generators – that protects the confidentiality of user data (model inputs and
outputs) and/or the AI model itself (its weights and architecture).

The structure of this whitepaper is as follows:

●​ This “Overview” section provides an overview of what the confidential computing
use cases and guarantees are in the context of AI inference.

●​ The section “The two aspects of confidential inference” provides a high-level
description of what confidential inference systems aim to achieve, both with
confidential data and with confidential models.

●​ The section “Service provider guarantees” details what the service provider (typically
a cloud service provider) guarantees the other parties in order to ensure
confidentiality.

●​ The section “Trusted execution environments with AI accelerators” details
approaches to including AI accelerators in the confidential inference system.

●​ The section “Components and their design principles” presents a sketch, or reference
design, of a confidential inference system implementing both the confidential data
and the confidential model aspects, and dives into some principles involved in the
design of such a system.

●​ The section “Threat model, risks and attack scenarios”, while not a comprehensive
security review of a complete design or implementation, goes over some of the
major security threats involved with confidential inference.

What is confidential computing, in the context of AI inference?

The Confidential Computing Consortium defines Confidential Computing ([1], section 2) as:

Confidential Computing is the protection of data in use by performing
computation in a hardware-based, attested Trusted Execution Environment.

It also highlights AI inference as a key use case for confidential computing technologies [3].

Typically, three parties are involved in AI inference computations:

1.​ The model owner. Usually, this is the organization that built/trained the model, and
owns the model architecture and model weights. In some cases, such as when a

4

https://confidentialcomputing.io/

base model is fine-tuned on proprietary data, the model owner may be the
organization that adapted the model.

2.​ The data owner / end user. The data owner owns data that they wish to provide as
input to an AI inference service, and receive its output.

3.​ The service provider. This is either a cloud service provider, or an on-prem
compute service. There are two options for what the service provider provides:

a.​ Infrastructure-as-a-service (IaaS): Virtual machines, AI accelerators, private
networks, storage, key management systems and other cloud services, on top
of which the model owner builds their AI inference service.

b.​ “Inference-as-a-service”: A cloud service which provides AI inference APIs.
Examples of cloud platforms with AI inference services include Amazon
Bedrock on AWS, Vertex AI on GCP, and Azure AI services.

The confidentiality requirements

An inference computation typically consists of performing forward propagation through a
deep neural network with many1 parameters (model inputs and model weights), generating
a result (model outputs). The parameters are used in mathematical operations, such as
matrix multiplication. The precise order and layout of these mathematical operations are
essentially the model architecture. The operations require direct access to the
input/weight parameter values, and yield direct access to the output values.

Therefore, the computation requires full access2 to the inputs, outputs, and weights.
However, for various reasons, including business, security, privacy, and compliance, the
parties wish to perform the computation confidentially:

1.​ The model owner wants to keep the model architecture and weights confidential,
without needing to trust the other two parties.

2.​ The data owner wants to keep the model inputs and outputs confidential, without
needing to trust the other two parties.

3.​ The service provider wants to host the AI service while assuring the other two
parties that it cannot access their weights and data.

2 Ideas such as Homomorphic Encryption – making computations without decrypting the
parameters – have not yet matured enough to be usable in the scale and performance required for AI
inference, leading to full decryption being a requirement for successfully performing an inference
computation.

1 In today’s largest models, the amount of parameters ranges from hundreds of billions to a few
trillions.

5

Meeting the requirements with confidential computing

Confidential computing technologies include the ability to set up Trusted Execution
Environments (TEEs), having the following properties:

1.​ With hardware support, the memory of the TEE is inaccessible, even to the
operating system kernel.

2.​ Similarly, debugging features like breakpoints, traces, counters, etc. are disabled
inside the TEE, making it impossible to monitor or alter execution.

3.​ The TEE can produce a cryptographically-signed proof (“attestation document”)
proving that it is running the expected code (the image was not tampered with).

Confidential computing TEEs are the basis for confidential inference systems where the
requirements of all parties can be met. The design principles for such a system, and the
associated security risks, are detailed in this document.

For the definitions and technical analysis of confidential computing technologies used in
this document, see [1] and [2].

Limitation of scope

●​ This document discusses the confidentiality of the model only during the inference
computation. Other procedures in the model’s lifetime are not discussed. For
example, insecure backups of the model weights may defeat their confidentiality.

●​ This document focuses specifically on inference. Although confidential computing is
also relevant for other AI use cases where confidential access to the model is
desired (such as training, fine-tuning based on proprietary data, interpretability
research, and others), these use cases are out of scope for this document.

6

The two aspects of confidential inference
This section includes an overview of the two aspects of confidential inference:

1.​ The data aspect: The inputs and outputs of the model are confidential.
2.​ The model aspect: The model weights and architecture are confidential.

The two aspects are independent of each other, but not mutually exclusive; a confidential
inference system may implement either aspect, or both of them. While the confidentiality
goals are similar, the characteristics and data paths are different, and require separate
designs.

The confidential data aspect

In the confidential data aspect, the user data (inputs and outputs of the model) are kept
confidential. This may consist of:

●​ Simple ephemeral input/output pairs (as used in chat assistants, image generators,
and other AI applications).

●​ Input/output data that is retrieved from storage, cache or external sources (as used
in generative AI features such as RAG, prompt caching, and MCP).

Confidential inference systems with confidential data may be used to ensure data privacy,
and allow the use of AI applications to process PII, PHI, or other private data, even as the
data leaves the customer’s network to be processed in the service provider’s network.

Confidentiality and integrity requirements
From the data owner’s point of view, this aspect of confidential computing is similar to
requiring an end-to-end-encrypted communication channel with the AI model, where
nobody except the data owner and the AI model itself can access (read and/or manipulate)
the data. The host which runs the model, including other applications running on this host,
should have no way to access the data.

Optional authenticity and containment requirement
As part of the confidential data aspect, it is beneficial to let the data owner have a way to
audit the workload accessing and processing their data:

●​ The data owner should be able to verify the workload’s authenticity, confirming it is
indeed the AI model inference system and not a deceptive, malicious workload.

●​ The data owner should be able to audit the flow of their private data within the
workload. This auditing capability allows the data owner to ensure that their data is

7

contained within the AI inference system, processed solely for essential AI inference
purposes, and is not saved, copied or logged in a way that allows subsequent access.

With this requirement implemented, the data owner can verify independently that the data
is processed confidentially by the AI model (based on the service provider guarantees,
detailed below). Without it, the data could still be processed confidentially - but the data
owner must explicitly trust the model owner, not just the service provider.

Implementation examples
An example project implementing a confidential inference system with confidential data
based on AWS Nitro Enclaves can be found in [7].

An exploratory work implementing a confidential inference system with confidential data
based on NVIDIA H100 can be found in [8].

The confidential model aspect

In the confidential model aspect, the model parameters (that is, its weights and
architecture) are kept confidential. This aspect is beneficial for AI model
manufacturers/owners, and they can use the confidential inference system in order to:

●​ Deploy their AI models to cloud service providers without sharing the model with
the service provider.

●​ Decrease network latency and enable real-time AI applications by deploying their AI
models to edge service providers without sharing the model with the service
provider.

●​ Deploy their AI models to customers (on-premises / private-cloud deployments)
without sharing the model with the customer.

Confidentiality and integrity requirements
The AI model owner requires a way to share the model weights and architecture with the
inference service in such a way that only the inference service can have access to them.
Other processes running on the host, including the operating system kernel, should not be
able to access these parameters.
The confidentiality requirement extends to requiring defenses against efforts to
reverse-engineer and extract the model weights and architecture from the deployed
model.
Furthermore, for models that demonstrate dangerous capabilities, requiring security level
SL4 or above (detailed in the subsection below), the model owner may wish to isolate the

8

model weights and keep them confidential from their inception (initial pretraining), so they
are not directly accessible even to the model owner itself.

Authenticity and containment requirement
It is required that the AI model owner has a way to confirm that the workload accessing the
model weights and architecture is the workload that they have authorized to access the
weights, and not a malicious workload. They must also be able to audit the data path of the
weights in this workload. This way, the model owner can ensure that the weights and
architecture are contained within the confidential boundary, and are not duplicated, logged
or copied outside of this boundary.

Confidential computing for SL4 and SL5 security levels of model
weights
The RAND research report “Securing AI Model Weights” [4] defines five security levels for
model weights. The top two security levels, SL4 and SL5, are designed for systems that can
withstand weight theft attempts by threat actors ranging from leading cyber-capable
institutions and state-sponsored groups to the world’s most capable nation-states. These
security levels are recommended for models that demonstrate dangerous capabilities, such
that the risks associated with the theft of their weights are high.

For models that require an SL4 or SL5 security level, the report strongly recommends that
confidential computing technologies be used, when available, for securing the model
weights. The report requires making the following assurances:

●​ The TEE includes protections against physical attacks.
●​ Model weights are encrypted by a key that is confidentially generated and stored

within the TEE.
●​ The code running within the TEE is prespecified, audited, and signed. The audit

process ensures that the TEE does not leak the weights, and only uses them directly
as necessary in the AI workload.

9

Service provider guarantees
The service provider makes guarantees that enable the implementation of the confidential
AI inference system. These guarantees are critical to ensure that nobody except the data
owner (end user) can access the user data, and that nobody except the model owner can
access the model weights and architecture. Service provider operators and unauthorized
applications (and by extension, attackers who have compromised the hosts or
infrastructure running the confidential AI inference system) are therefore restricted from
accessing this confidential data.

Three major cloud service providers - AWS, GCP, and Azure - have implementations of
confidential computing solutions: AWS Nitro System with Nitro Enclaves, GCP Confidential
VMs with Confidential Space, and Azure Confidential VMs. These implementations make
some of the guarantees described in this section.

Hardware-based compute (CPU) and memory isolation

At the heart of confidential computing technologies is the isolation of confidential
workloads from the other workloads. This is done by isolating a process, a container (or
Kubernetes pod), or an entire virtual machine (or Kubernetes node), so that the instructions
it executes and the memory it uses are not accessible to other processes, containers, or
virtual machines, even by the operating system kernel or hypervisor. This includes
protections such as disabling monitoring or debugging facilities, encrypting memory, and
protections against side-channel attacks.

Software is not enough for these protections - for example, a software-only kernel
module/driver implementing process isolation could be disabled/bypassed via another
kernel module. These protections are therefore implemented in hardware, using
technologies such as Intel SGX, Intel TDX, AMD SEV/SEV-SNP, and AWS Nitro System.

Secure cryptographic attestation of the running workload

The hardware powering the confidential computing technology can be used to securely
attest the code running in the confidential inference system is the expected (and
authorized) code. This is done using TPM (Trusted Platform Module) hardware, producing
measurements of the workload binaries, the underlying operating system, and the low-level
boot process itself (known as measured boot). These measurements, presented as PCR
(Platform Configuration Register) values, are included in an attestation document that is
cryptographically signed by the hardware, using a hardware-based root of trust. This
attestation document is used for validating the running workload.

10

The service provider must guarantee that the hardware-based root of trust is not
compromised (e.g. its private key is not leaked), and that it correctly measures and signs
the PCR values, so that the attestation document cannot be forged by an attacker.

Trusted Execution Environment (TEE)

The compute and memory isolation and encryption, together with secure attestation, are
used in order to form a trusted execution environment (TEE), sometimes referred to as a
secure enclave or a confidential boundary, in which data can be processed confidentially.
The service provider may provide methods to decrypt confidential data only within the
TEE. One way to do it is by introducing KMS policies, allowing decryption only when the
request comes from within the TEE, which can be verified using the attestation procedure.
Another way is to generate the encryption keys (possibly ephemeral keys) within the TEE.

The relationship between the TEE and AI accelerators
As part of AI inference, data which is considered confidential (user data, model weights,
model architecture) needs to be transferred from the CPU to AI accelerators (GPUs/NPUs)
and back. This is detailed further in the next section.

Restricted operator access

Both the model owner and the data owner benefit from reduced access by service provider
operators to the decrypted confidential data and parameters, and the service provider can
(optionally) make guarantees in this area.

One possibility for restricting operator access is avoiding installation of control programs
(“agents”) inside virtual machines and cloud-hosted services, and leaving the entire data
plane to the service provider’s customer (the model owner).

Typically with cloud service providers, even if there is restricted access by operators to the
data plane (e.g. remotely connecting to virtual machines or other cloud-hosted services),
there is still a control plane: A set of administration interfaces, where these services can be
shut down, duplicated, or reconfigured, including security policy reconfiguration. One
more possibility for restricting operator access is restricting operator access to this control
plane as well.

An example implementation of restricted operator access can be found in AWS Nitro
System, which is designed to prevent operator access entirely - see [9]. This guarantee is
also included in the Service Terms for AWS Nitro System. It can be difficult for parties

11

outside the service provider to verify the implementation of restricted operator access
controls; in the case of AWS Nitro System, this was verified by a third party - see [10].

Trusted execution environments with AI accelerators
AI accelerators (GPUs/NPUs) are essential, critical components of training and inference
systems for many modern AI models. They are physically separate from the main CPU;
therefore, care must be taken to ensure that the confidential boundary extends to the
accelerator. The main issue is that, as part of inference, data which is considered
confidential (user data, model weights, model architecture) needs to be transferred
between the CPU and the accelerators. A second issue is debugging features (such as
memory dumps) and measuring features (such as performance counters) which may be
used to circumvent the confidential boundary on the accelerator.

Note that AI inference systems might make use of an array of multiple AI accelerators that
share the workload, connected to each other via high-speed connections (such as NVLink,
InfiniBand, or others). In this case, the security of these inter-accelerator connections is
beyond the scope of this document; for the purpose of this document, the AI accelerator is
treated as a discrete hardware device connected to the host.

There are two approaches to including AI accelerators in a confidential inference system:

First approach: Native support within the AI accelerator

In this approach, the accelerator hardware includes features that can be used to implement
a TEE, as described above (isolation, encryption and attestation), within the accelerator
itself. The accelerator receives encrypted confidential parameters (user data, model
weights and architectural parameters), natively decrypts them as needed, and the
unencrypted data resides only in the accelerator’s private memory; the output is encrypted
before it’s sent out of the accelerator. Furthermore, the accelerator disables debugging and
measurement features for the duration of the computation, in order to provide compute
isolation, and includes secure attestation features, in order to allow verification of the
computation it performs.

There are two possibilities for how the encrypted confidential parameters are delivered
to/from the AI accelerator:

1.​ End-to-end parameter transfer (single TEE): The key used to decrypt/encrypt the
confidential data is only accessible within the accelerator TEE: Either it is generated
by the accelerator and does not leave it, or it is an outside key (e.g. on a KMS) that

12

can only be accessed from within the accelerator, based on a policy that validates
the accelerator-generated attestation document. End-to-end parameter transfer
means that only the accelerator TEE does any data processing; any non-accelerator
(CPU) inference system application cannot access the data, and at most, can only
function as a “router”, blindly transferring encrypted, inaccessible data. Therefore,
only the accelerator TEE is required for the confidential inference system, and
relevant applications running on the host do not have to run in any TEE.

2.​ Host-to-accelerator direct parameter transfer (two TEEs): The accelerator
supports confidential data sharing “locally” (with the CPU), e.g. via an encrypted
shared memory buffer. This secure channel is established between the CPU and the
accelerator, so the application running on the CPU needs access to the plain data in
order to encrypt it in a way that the accelerator can access. Since the data is
confidential, this requires an additional TEE on the CPU, in which the confidential
data is decrypted; it is then re-encrypted for the accelerator, and sent out of the
CPU-based TEE into the accelerator-based TEE for decryption and processing.

An example of AI accelerators with native support for confidential computing is
Confidential Computing on NVIDIA H100 GPUs. An exploratory work using this can be
found in [8].

Second approach: Bridging the CPU enclave to the accelerator

In this approach, the accelerator does not natively support confidential computing (or
these features are not used). Instead, the accelerator is bridged or “attached” to the TEE on
the CPU, so it becomes a hardware extension to this TEE. Note that this approach is not
airtight, and may be susceptible to some attacks, such as certain side-channel attacks, as
the delivery of the confidential data from the CPU to the GPU is not encrypted in this
approach. Other protection features, like memory encryption, isolation within the
accelerator, and disabling debugging/monitoring features on the accelerator are required
to form a secure solution.

There are two ways to implement this approach:

1.​ Hardware-enforced TEE-only access: Hardware features in the CPU or hypervisor
are used to ensure that only the TEE is able to access the accelerator (e.g. the PCIe
bus). These features may include CPU core allocation (only the cores that are
allocated to the TEE are allowed to run code which accesses the accelerator) and
write-only memory (a memory range in the accelerator that can only be written,
where input parameters are loaded, and only the accelerator may read them; and a
memory range in the TEE that can only be written, where output parameters are
returned, and only the TEE may read them).

13

https://developer.nvidia.com/blog/confidential-computing-on-h100-gpus-for-secure-and-trustworthy-ai/

2.​ The entire VM is the TEE: If the entire VM is treated as the TEE, then there is no
need for special handling - the accelerator is, by definition, inside the confidential
boundary. However, this option could introduce additional attack surface (namely,
the operating system and the services running on it), which could be avoided with a
leaner TEE.

Components and their design principles

There are three major components of a confidential inference system, illustrated above:

1.​ Confidential inference service.
2.​ Model provisioning procedure.
3.​ Enclave dev & build environment.

Confidential inference service

The confidential inference service component is responsible for receiving the model
input, weights and architecture, executing the model, and sending out the model output.

14

A reference design of the confidential inference service consists of a host, owned by the
service/compute provider, running two sub-components:

1.​ Secure enclave program. A program running as a secure enclave / trusted
execution environment (TEE) on this host, which makes up a “confidential
boundary” in which plain (unencrypted) weights and data may be present. The
enclave cannot communicate with the outside world apart from a specific
predefined tunnel interface for communicating with the host. This program could
run either on the CPU or on the AI accelerator; see also the section “Trusted
execution environments with AI accelerators” above.

2.​ Out-of-enclave programs & communication proxies. Programs running on this host
outside of the TEE, including a “loader” program which is responsible for loading the
secure enclave and communicating with it over the specially-defined tunnel. This
tunnel is meant for facilitating communication between the enclave and any
external resources, such as storage buckets for obtaining the encrypted model
weights, the model owner’s KMS for weight decryption, and communication of
model input & output with the data owner.

Out-of-enclave programs
The programs running directly on the host are owned and operated by the service
provider. They are responsible for launching the enclave, ensuring that it is a valid enclave

15

(also known as an authenticated launch, implemented using cryptographic attestation) and
communicating with it.

The secure enclave
The content (source code and files on the file system) of the enclave image is normally not
confidential to any party (that is, it is not encrypted at all); rather, the data that it is
designed to handle and run computations on is confidential. For the inference use case, the
purpose of the image is to be a model loader and invoker. That is, it receives and decrypts
model parameters (architecture and weights) from the model owner, and model inputs
from the data owner; it loads the model, and invokes it to produce model outputs. The
loader and invoker must be developed in a generic manner – agnostic to the model
architecture and weights; particularly, it cannot contain any secrets owned by the model
owner, because these may easily be revealed by reverse-engineering the image.

Furthermore, it is in the model owner’s interest that the model architecture & weights are
not leaked by the enclave; and it is in the service provider’s and data owner’s interests that
the model inputs & outputs are not leaked by the enclave. Therefore, although the program
running in the secure enclave is capable of decrypting weights and inputs (in fact, it must
do this), it has the requirement that it must not do anything with them that is not
absolutely required for inference. For example, it must not leak the decrypted weights
through the available communication interface.

Note that since the enclave is a loader, the same enclave program may be used for different
models. A well-designed enclave program may be usable for a wide range of models, and
might not require frequent changes.

Decryption of the model weights and architecture
Outside of the confidential boundary, the model parameters (weights and architecture) are
stored encrypted at rest (see also the “Model provisioning” section below). It can be
assumed that the encrypted parameters can be copied into the secure enclave, where they
are ready to be decrypted.

Under this assumption, the question is how to provide the secure enclave with the data
decryption key (or, in the common case of envelope encryption, how to unwrap the data
encryption key). A reference design of how to do this is as follows:

1.​ An external KMS holds the data decryption key. (For envelope encryption, it holds
the key encryption key, known as “KEK”, which can be used to “unwrap” the wrapped
data encryption key, known as “DEK”).

16

2.​ The enclave can communicate with the KMS over the communication channel
facilitated by the programs running outside of the TEE. A secure communication
channel is established (using a protocol such as TLS).

3.​ The enclave provides a signed attestation document to the KMS, proving its identity.
The attestation document contains a signed ephemeral public key.

4.​ The KMS verifies the attestation document, and then encrypts the data encryption
key with the ephemeral public key and sends it back to the enclave. (For
envelope-encrypted weights, the enclave first provides the wrapped data
encryption key, and the KMS unwraps it.)

Encryption of the model inputs and outputs
There are two approaches to encryption of the model inputs and outputs:

1.​ Encryption termination at the service provider: The client encrypts the model
inputs, and they are decrypted by the service provider, which forwards them to the
confidential inference service.

2.​ End-to-end encryption (E2EE): The client encrypts the model inputs, and they are
decrypted only inside the TEE.

(In both approaches, the outputs are handled in the same way, in reverse direction.)

In the first approach, the data owner shares their data with the service provider (but not
with the model owner), and does not implement the confidential data aspect of the
confidential inference system. The client sends the model inputs to the service over a
secure protocol such as TLS. The service decrypts the model inputs, and simply sends them
directly to the TEE. (At this point, there is no point in re-encrypting the model inputs upon
entering the enclave, as they are already accessible to the service provider.)

In the second approach, the data owner does not share their data, thus implementing the
confidential data aspect of the confidential inference system. There are a few options for
how to implement this:

1.​ The client receives an attestation document from the enclave, and validates it. Then,
it uses the signed public key from the attestation document in order to send the
encrypted data to the service, encrypted (e.g. envelope-encrypted) in a way that
only the enclave is able to decrypt it.

2.​ The client uses a KMS in order to encrypt the data; the KMS is configured with a
policy that will only allow the enclave (based on a signed attestation document) to
decrypt the data. This method is used, for example, in [7].

17

Model provisioning procedure

The model provisioning procedure component consists of methods to prepare the model
for use within the confidential inference system. That is, to encrypt the model so that it
may be stored encrypted, and only decrypted within the confidential boundary of the
confidential inference service.

In general, as part of the model provisioning procedure, model parameters (architecture
and weights) should be encrypted with strong encryption, and the encrypted weights are
assumed to be opaque and impossible to decrypt without access to the encryption key.
Therefore, the encrypted parameters may be stored at rest with a lower security level than
the confidential boundary (e.g. in cloud storage).

KMS-based model encryption
Some advantages of using a key management system (KMS) to encrypt model parameters
are:

●​ Good KMS implementations never leak encryption keys, and strictly limit the
operations that can be performed with the keys to a well-defined API (e.g. a
“decrypt” API operation). Using a KMS therefore eliminates the inference system’s
need to handle encryption keys by itself, and reduces security risks associated with
the encryption key handling.

18

●​ Moreover, this changes the conditions required for being able to decrypt the model
parameters. Instead of “knowing the key”, the condition becomes “having
authorization in the KMS API policy”.

●​ Some cloud-based KMS implementations have native support for policies
authorizing secure enclave access, and these can be used.

There are three possible places that this KMS may reside:

1.​ Cloud-native KMS, on a cloud account belonging to the model owner, on the same
cloud service provider that hosts the inference service.

2.​ Custom (not cloud-native) KMS, on a machine that belongs to the model owner,
possibly on a different cloud service provider (or on-prem host) than the one
hosting the inference service.

3.​ Custom KMS, running as an additional service inside the secure enclave defined
above (as part of the confidential inference service component).

The most convenient option is the first option: Cloud-native KMS. This may benefit from
native support for authorizing secure enclave access. However, a security tradeoff is made
with this choice. Within the threat model of the system, the model owner may choose not
to trust the service provider, or its account on it; the potential compromise of both of them
are in scope within the threat model. Such a compromise would allow a threat actor to
decrypt the model parameters. As an example, consider that an AWS-based model owner’s
AWS admin account is compromised; then the threat actor can discover the encrypted
model weights on an S3 storage bucket, and discover the AWS KMS CMK used to encrypt
them. With a simple policy edit, the threat actor can give themselves decryption access on
the KMS API, and use it to decrypt the weights.

The second option, a custom KMS running on a host owned by the model owner, eliminates
the risk of policy edits by a threat actor. However, it introduces a couple of additional risks:

1.​ Communication with the KMS now needs to happen over an external network (e.g.
the Internet) and this connection must be secured.

2.​ The KMS must be built securely, including adequate protection of its keys, which
may be a challenging engineering task.

3.​ The KMS must be able to correctly validate secure enclave attestation documents
generated by the confidential inference service, which may also be a challenging
engineering task having potential security pitfalls.

The third option, a custom KMS running as an additional service inside the confidential
inference TEE, eliminates once again the risk of external communication, but retains the
challenges of engineering the KMS. The benefit of this is that the encryption key is
generated in, and never leaves, the confidential boundary of the TEE. Note that:

19

●​ According to the RAND research report “Securing AI Model Weights” [4], models
requiring security level SL4 or SL5 need to use TEE-isolated weight encryption keys,
effectively requiring this option.

●​ In some of the current implementations of VM-based secure enclaves, it is not easy
to implement a KMS inside a secure enclave if there is no persistent storage or a
reproducible source of confidential random number generation available. It is
possible to implement a KMS inside an enclave which is always up, using the
enclave’s encrypted RAM as secure storage; this introduces further engineering
complications.

KMS monitoring and controlled availability
In any of the above approaches, it is important to monitor (log) the use of the KMS to
decrypt the model weights, in order to track down illicit uses. Furthermore, for particularly
risky models with strictly controlled access, it may be considered to introduce “controlled
availability” for the KMS: Keep the KMS offline (“cold”) by default, and connect it to the
system (either automatically or manually, depending on the use case) only when the model
weights need to actually be decrypted by the secure inference service. This reduces the
risk of unexpected out-of-band KMS decryption access attempts by a threat actor.

Optional confidential model provisioning
Normally, a model can be provisioned for the confidential inference system once it is
“ready” – that is, once its training / post-training / fine-tuning steps (colloquially, “model
finalization steps”) are completed and its architecture and weights are finalized. Assuming
these model finalization steps occur outside of a TEE, the model parameters exist in an
unencrypted form outside of the TEE at this “pre-provisioning” stage (e.g. in storage owned
by the model owner).

In some cases, model weights may need to be confidential even during or immediately after
training/finalization, including the model owner themselves being restricted from having
access to their own model’s weights. This could be suitable for models requiring SL4 or SL5
security levels (see [4]). This is beyond the scope of the confidential inference system;
however, we still mention it here, because it is adjacent, and crucial for the protection of
the model weights. There are generally two ways to achieve this:

1.​ Best-effort secure training and immediate destruction: Harden the security
controls on the servers / workloads that perform the model training, weight
finalizations, and confidential inference provisioning. Upon provisioning, the
unencrypted model parameters should be destroyed (the tradeoff being that if they

20

are not destroyed, the existence of their unencrypted copy may form an easier
opportunity for their theft).

2.​ Confidential training and provisioning: Perform the model training and finalization
steps inside a TEE (the design principles of which are beyond the scope of this
document), and provision the model parameters for confidential inference from
within this TEE.

Enclave dev & build environment

The enclave dev & build environment consists of the environment that needs to be set up
to develop and build (and “package”, in the terminology used by the Confidential Computing
Consortium - see [2]) the secure enclave that is set up and used in the confidential
inference service.

In VM-based TEE technologies, the secure enclave must be built, packaged and measured3
in order to later validate that the expected enclave is running in the TEE. For example, in
AWS Nitro Enclaves, this process consists of building a Docker image, and then packaging it
to an “EIF” (Enclave Image File) format. In GCP Confidential Space, it consists of building a
Docker image, and then signing its measurements.

3 Measurement is the process of computing hashes over certain properties of the secure enclave.
These measurements are included in the cryptographically-signed attestation document that the
enclave produces.

21

Enclave program source code assurance
As explained above, it is in the interest of all parties that the enclave does not leak one
party’s data or parameters. In order to assure all parties of this, the enclave program source
code must be made available for audit by all parties. In other words, program may have one
of the following styles of code ownership:

●​ Shared-source, with the source code of the program being co-owned by the model
owner and the service provider. This way, the model owner can audit the code and
ensure that it does not leak or manipulate the model weights, while the service
provider can ensure that the code does not leak or manipulate its clients’ data.

●​ Open-source, with the source code of the program being made available for anyone
to audit, and maintained by the model owner and the service provider (or possibly a
separate, third-party open-source project maintainer). In addition to the above, this
also allows the third party – the data owner – to audit the code and ensure that its
data is not being leaked or manipulated.

Enclave program binary assurance
Even when all parties are assured, through source code audits, that the enclave program
does not leak data or parameters, there is still the possibility that the compiled binary does
not fully match the source code. This way, additional capabilities (or bugs / vulnerabilities)
may be introduced to the image, which allow leak / theft of data or parameters.

One important case where this could happen is the case that the build environment is
compromised; the build environment is an extremely fruitful target for executing a supply
chain attack, allowing attackers to inject malicious code into the enclave where model
weights and data are decrypted. Therefore, the build environment must be hardened
against compromise.

Even if the build environment is not compromised, simply having one of the involved
parties own and control the build is enough to break the assurance. For example, if the
model owner builds the enclave, the service provider and data owner cannot be sure that
the model owner has not added functionality to reveal the data; similarly, if the service
provider builds the enclave, the model owner cannot be sure that there is no added
functionality to reveal the model weights.

There are three approaches for achieving binary assurance:

22

Approach #1: Fully reproducible build process
The enclave program is built using a fully reproducible build process. This way, one party (it
does not matter which one) builds the enclave program, and publishes the binary; the other
parties also build the program, and compare their result to the published binary. The
additional builds are discarded and not used, but the comparison achieves the required
binary assurance.

Note that, in many cases, the build process has 3 major build steps:

1.​ Build the program binary with a compiler (such as gcc) - unless it is written in an
interpreted language (such as Python).

2.​ Build a container image with a container image builder (such as Docker).
3.​ Package an enclave image with an enclave image packager (such as the AWS Nitro

Enclaves builder), or sign its measurements (e.g. the GCP Confidential Space build
process).

In a fully reproducible build process, all steps of the build process must be reproducible.

An example of an enclave image build system which supports reproducible builds is Bazel,
which can be used for building Confidential Space images for GCP. See also [11].

Approach #2: Binary analysis
Lacking a fully reproducible build process, the enclave program binary may be compared
with the source code by using binary analysis tools, such as BinDiff, to analyze the
compiled binary.

Approach #3: Using a pre-built, pre-assured third-party or open-source binary
In the “third-party” / “open-source” style of ownership, the enclave program is owned by a
separate, third-party / open-source “enclave owner”. The enclave owner may build the
enclave and publish the binary, and then they (or the open-source community) may publish
their assurances of the image using methods such as the two described above (a fully
reproducible build process, or binary analysis). Note that, especially if relying on the
open-source community, care must be taken to ensure that the assurances are legitimate
and verifiable.

Third-party content in the enclave image
The enclave image contains third-party content, such as a container base image (e.g. a
Docker base image), a language interpreter (e.g. Python), a suite of precompiled code
libraries, and others. This content poses risk to the integrity of the enclave program; bugs,
vulnerabilities or upstream supply chain compromises of this content could cause the

23

https://github.com/bazelbuild/rules_docker
https://github.com/google/bindiff

enclave program to be compromised, or to make it possible to leverage the enclave
program for stealing model parameters or data.

In order to reduce the attack surface, the usage of third-party content should be reduced
to a minimum. For example, it is advisable to use an empty base image (Docker “FROM
scratch”), only bringing in the required libraries for loading the enclave; to remove any
unnecessary dependencies; and to audit any dependencies that are required and cannot be
removed.

Third-party tooling in the build environment
The build environment is likely to contain third-party tooling, such as a compiler, a
container image builder, and a suite of shell utilities. Care must be taken when setting up
the build environment that these tools are vetted, as any bugs or upstream supply chain
compromise of these tools could lead to a compromise of the built enclave image.

One example of a build environment that is not set up securely can be found in the Black
Hat USA 2016 talk “SGX Secure Enclaves in Practice: Security and Crypto Review” [5], in
which it was demonstrated that enclave build utilities were downloaded from the vendor
website over an insecure plain-http connection, providing attackers having sufficient
access to the network with the opportunity to inject malware into the downloaded build
tools.

24

Threat model, risks and attack scenarios
This section includes some of the threats involved with the design of confidential inference
systems. While not a comprehensive security review of a complete design or
implementation, it goes over the major threats. Other, more specific security reviews exist,
such as Google’s overview of Confidential Space [12], and they complement this section.

The confidential inference threat model

The threats considered in confidential computing are threats to the integrity of the code
and confidentiality of the data inside the TEE, where the threat actors are assumed to have
control over everything outside of the TEE. This assumption can be realized through a
cyber attack or insider threat; additionally, in the multi-party context described here (e.g. a
model owner and a separate data owner), this assumption is realized through each party
not trusting the other parties, and requiring assurances that the other parties cannot
access their data.

The general threat model for confidential computing is described by the Confidential
Computing Consortium ([1], section 5) as such:

Confidential Computing aims to reduce the ability for the
owner/operator/pwner of a platform to access data and code inside TEEs
sufficiently such that this path is not an economically or logically viable attack
during execution.

Therefore, within the threat model of confidential inference systems:

●​ The threat actor can be assumed to have complete control over any machine / VM
associated with the inference system, including machines where a secure enclave is
loaded (in the terms used in this document - the Confidential Inference Service
out-of-enclave programs).

●​ The threat actor can be assumed to have complete control over any cloud or
on-prem network resources associated with the inference system, including storage
buckets where encrypted weights are stored.

●​ For the purpose of confidentiality assurance, it can be assumed that each party does
not trust the other parties; in other words, each party assumes the other parties to
be “threat actors”, in the sense that having them gain access to confidential data is
considered a threat within the threat model.

Regarding the three major components of confidential inference as described in this
document:

25

●​ The confidential inference service is the backbone of the system. This is the
component holding the TEE in which the model architecture, weights, inputs and
outputs are decrypted and/or held unencrypted, and is a prime target for attack.

●​ The model provisioning procedure is where the model architecture and weights are
encrypted, and stored/downloaded in their encrypted form. This is a potentially hot
target for attacks, particularly cryptographic attacks.

●​ The enclave build environment is a lucrative target for supply-chain attacks,
because controlling this environment gives a threat actor easier access to the TEE
holding the unencrypted model parameters and data.

Systemic vs. introduced security risks

There are two different kinds of risks:
●​ Systemic risks - risks which are inherent in the confidential computing system

components that are relied upon by the inference system. Some, but not all, of these
risks may be considered to be out-of-scope in the confidential inference threat
model.​
​
In order to mitigate these risks, the inference system implementers need to be on
the alert for publicly disclosed vulnerabilities and/or publicly uncovered cyber
operations, and install any patches in a timely manner. Moreover, according to the
RAND research report “Securing AI Model Weights” [4], for models requiring the top
security level (SL5), it is recommended that the model owners employ a team of
experts who proactively search for zero-day vulnerabilities in components related
to securing model weights; this includes all confidential computing system
components, and is a way to further reduce these systemic risks.

●​ Introduced risks - risks which are introduced by the implementation of the
confidential inference system. These risks are related to insufficiently secure design,
implementation or configuration of the inference system itself, even assuming
security of the individual confidential computing components that it comprises.​
​
To mitigate these risks, the inference system implementers need to ensure the
system is implemented securely, practice defense in depth, and audit the security of
the system through security reviews and red-team engagements.

Systemic risks

Flaw in the implementation of the secure enclave, including the hardware and software
powering it. Confidential inference relies heavily on the security of the secure enclave.

26

●​ Flaws in the hardware implementation of VM-based CPU and memory isolation. This
includes CPU cache / side channel attacks on the memory isolation technology, and
also includes physical access attacks, such as cold boot attacks.

●​ Flaws in the kernel driver for the secure enclave (e.g. “nsm.ko” for the AWS Nitro
Secure Module) which is responsible for communicating with the hypervisor from
within the enclave and requesting an attestation document from it.

●​ Flaws in the base enclave software (e.g. the Nitro Secure Module software
components, such as the “nitro-cli” enclave loader and “vsock-proxy”).

●​ Flaws in the hypervisor, which allow circumventing isolation (e.g. with a
guest-to-host escape vulnerability or a guest-to-guest lateral movement
vulnerability) or forging cryptographic attestation signatures.

Flaw in the AI accelerator’s confidential computing technologies. Inference requires AI
accelerators, and they must properly be included within the confidential boundary.

●​ Flaws in the hardware, firmware, or driver implementation of NPU and memory
isolation in the AI accelerator. This includes the ability to read confidential memory
regions via the CPU, to enable debugging features (breakpoint, monitoring,
counters, etc.) on the NPU, to use side-channel methods to discover the contents of
isolated memory, or to sideload additional NPU programs which can access
confidential memory from within the NPU.

Vendor-side supply-chain risks. The confidential inference system is full of components
(both hardware and software) that originate from third parties, such as hardware secure
modules and hypervisors. There is a risk that these components, as provided by the vendor,
include malicious functionality due to a vendor-targeted supply-chain attack (such as a
threat actor manipulating the source code in the vendor’s source control, or
replacing/tampering with hardware before its arrival and installation at a datacenter).

●​ All the examples described above (flaws in the implementation of the secure enclave,
or the AI accelerator) also apply here, except in this case, the flaws are planted.

Cryptographic risks. Many components and subcomponents of the confidential inference
system, and confidential computing in general, rely on cryptography for their security.

●​ Breakthroughs in the cryptanalysis of the algorithms used to encrypt the weights, to
wrap the weights key, to encrypt the model inputs and outputs, to encrypt the
memory, to sign the attestation document, etc. If algorithms such as AES-GCM,
SHA-384, or others used in confidential inference systems are cryptographically
broken and a feasible attack can be mounted against them, this can seriously impact
the security of these systems. This includes mathematical or algorithmic
breakthroughs, breakthroughs in the availability of computing power, and
breakthroughs in the availability of quantum computers.

27

●​ The cryptographic algorithms and protocols are misused or have implementation
flaws, which can lead to feasible attacks. For example, if the attestation signature is
incorrectly validated by a KMS, an attacker could replace the enclave image with a
malicious one and pass attestation. Similarly, if the attestation signature uses a hash
function which is susceptible to collisions, an attacker could mount an attack
against the signature scheme and forge signatures.

●​ The attestation PKI4 is compromised (e.g. the hypervisor private key is stolen or
broken) so that attestation document signatures can be forged by an attacker.

Introduced risks

Risks introduced in the confidential inference service
Insecure handling of the secure enclave. There are various ways in which an implementer
can mishandle the secure enclave.

●​ When the enclave is loaded, it should be ensured that it is a valid enclave (this is
known as an authenticated launch). Failure to do so could allow the attacker to
replace the enclave with a malicious enclave, which may attempt to intercept
confidential data.

●​ If the system is implemented in such a way that the enclave can be run in “debug
mode” then the enclave running in this mode can be monitored or debugged by an
attacker. Furthermore, if it is possible to decrypt parameters (such as model
weights) inside a debug-mode enclave, then it is probably possible to decrypt them
outside of the TEE as well.

Code flaws or security design flaws in the secure enclave program. The secure enclave
program may have bugs or insecure design.

●​ Bugs in the parameter or data parsing in the enclave program could lead to enclave
compromise (arbitrary code execution in the enclave) or confidential memory
exfiltration.

●​ Data parsing bugs in any client running inside the enclave (such as a KMS client, TLS
client, DNS client, and others) could be attempted to be exploited by an attacker
running as a server on the host.

●​ Unnecessary open ports, software, or dependencies in the enclave image increase
the attack surface and could also lead to enclave compromise.

●​ Any flaw in backend software installed and running in the enclave endangers the
security of the enclave. This includes the Linux kernel, Docker itself, base Docker
images (“FROM”), core libraries such as PyTorch or TensorFlow, and others.

4 Public-key infrastructure.

28

Interception of traffic to/from the secure enclave. In the confidential inference service,
an attacker is well-positioned to intercept and/or manipulate traffic to/from the secure
enclave (known as a MITM5 attack).

●​ If some of the communication protocols to/from the enclave are unencrypted, they
are potential targets for MITM attacks; additionally, the unencrypted portions (such
as handshakes) of encrypted protocols could be attacked. Particularly, plain DNS
could be attacked, and various TLS attacks could be attempted.

●​ Combined with possible bugs in the enclave TLS client (such as failing to validate
certificates) or a PKI compromise, TLS MITM could be attempted. This is a
potentially devastating attack; it could be used, for example, to intercept and
manipulate the communication of the enclave with an external KMS.

Overly permissive policies for access to/from the secure enclave. The principle of least
privilege dictates that access to/from the secure enclave should be confined to the
minimum necessary.

●​ For example, in AWS Nitro Enclaves, the policy file “vsock-proxy.yaml” defining an
allow list of services that the enclave may access might be overly permissive, or not
kept up-to-date as the enclave image is updated with new versions of the enclave
program.

Mishandling of the AI accelerator data loading mechanism.

●​ If protection features like memory encryption/isolation, locking access to a specific
CPU, disabling debugging/monitoring features on the accelerator, and so on, are
not properly enabled by the secure enclave, then this could lead to compromise of
confidential data while it is on the NPU.

Risks introduced in the model provisioning procedure
Insecure protection of KMS decryption access. Access to the decryption API of the KMS
controlling the encryption of model architecture & weights must be securely protected to
prevent threat actors decrypting the model.

●​ If the KMS decryption access policy is misconfigured, and there is a rule allowing a
decryption request coming from somewhere other than the secure enclave, then the
architecture & weights can be decrypted by that source.

●​ Even having a correctly-configured KMS policy, if the policy regarding who is
allowed to edit the KMS decryption access policy is overly permissive, then whoever
is allowed to edit the KMS policy can technically decrypt the model architecture &
weights.

5 Man-in-the-middle, or machine-in-the-middle.

29

●​ If any user allowed to access the KMS for decryption or edit the KMS decryption
access policy is compromised (for example through a social engineering attack,
workstation compromise, API token leak, or insider threat recruitment), then threat
actors can leverage this access to decrypt the model architecture & weights.

●​ If the cloud account hosting the KMS is compromised, or the entire cloud service
provider holding that account is compromised, then this could similarly lead to KMS
decryption access.

Missing or insufficient KMS decryption access policy updates. From time to time, the
KMS decryption access policy needs to be updated. Failure to do so can undermine
security.

●​ When a secure enclave is decommissioned, its access to KMS decryption must be
removed to avoid violating the principle of least privilege.

●​ In particular, if a secure enclave is decommissioned due to the discovery of a
security flaw, extra care must be taken to remove its access to KMS decryption.
Such cases could introduce devastating BYOVE – “Bring Your Own Vulnerable
Enclave” attacks (see also [6]), where the threat actors leverage a decommissioned,
vulnerable enclave in order to run arbitrary code which has access to the decryption
of confidential model parameters.

Assurance-breaking KMS placement. The KMS controlling the encryption of model
architecture & weights is a critical component in assuring the model owner of the
confidentiality of the model.

●​ If the KMS is a cloud-native KMS, the service provider essentially has access to it –
both physical access in the datacenter, and regular access through the network.
They could bypass security policies and use the KMS to decrypt weights, breaking
the confidential inference assurance that the service provider cannot access
confidential data belonging to the model owner.

●​ Moreover, any placement of this KMS in the control of any party other than the
model owner, protected only by software-controlled policies, breaks this assurance,
as the KMS host is technically able to decrypt weights if they manage to obtain the
encrypted weights.

Insufficient key rotation or excessive key reuse.

●​ If a KMS key is compromised, then any data it was used to encrypt may be
compromised. To reduce the risk, the same KMS key should not be used to protect
too many copies of the model.

●​ If the same key is used to encrypt too much data, it is susceptible to surpassing the
usage limits of the particular cipher or cipher mode of operation. In particular,
weights are very large, so this may be more likely to happen in the confidential

30

inference use case than in other common encryption use cases, especially if many
different models’ weights are encrypted with the same key (or, with many cipher
modes, even if the same weights are re-encrypted).

Theft of encrypted model architecture & weights. Although they are encrypted, the theft
of encrypted parameters (e.g. from a storage bucket) still has security implications.

●​ Long-term stored encrypted model parameters are susceptible to “harvest now,
decrypt later” attacks, where the threat actor steals the encrypted parameters and
stores them until a way is developed to decrypt them. Some such ways are future
compromises of the KMS, or breakthroughs in feasible cryptanalysis, attainable
compute power, or availability of quantum computers.

Risks introduced in the dev & build environment
Compromised enclave build environment.

●​ If the environment being used to build the enclave image is compromised, it can be
used to slip malicious code into the enclave as it’s being built.

●​ If the setup of the environment (including downloading of tools from third parties)
can be tampered with, a threat actor can force building a compromised build
environment.

●​ When working with build instance templates/snapshots, care must be taken to
avoid malware existing in the environment while the template/snapshot is
generated.

Compromised enclave dev environment.

●​ If the workstations being used to develop the enclave program are compromised,
they can be used to slip malicious code into the enclave program as it’s being
written.

Assurance-breaking build procedures.

●​ If one of the confidential inference parties builds the enclave image, this may break
the assurance to the other parties that the enclave is safe to use. This is discussed in
detail above, in the section about the dev & build environment.

31

References
1.​ Confidential Computing Consortium. (2022, November). A Technical Analysis of Confidential

Computing v1.3.
https://confidentialcomputing.io/wp-content/uploads/sites/10/2023/03/CCC-A-Technic
al-Analysis-of-Confidential-Computing-v1.3_unlocked.pdf

2.​ Confidential Computing Consortium. (2022, December). Common Terminology for
Confidential Computing.
https://confidentialcomputing.io/wp-content/uploads/sites/10/2023/03/Common-Termi
nology-for-Confidential-Computing.pdf

3.​ Confidential Computing Consortium. (2025, January). Confidential Computing Messaging
Guide. https://drive.google.com/file/d/13Pdz2x8mvkjkhxT6nyk8iZdovcN8KNyo/view

4.​ Nevo, S., Lahav, D., Karpur, A., Bar-On, Y., Bradley, H. A., & Alstott, J. (2024). Securing AI Model
Weights: Preventing Theft and Misuse of Frontier Models. Research Reports, RAND.
https://www.rand.org/pubs/research_reports/RRA2849-1.html

5.​ Aumasson, J. P. & Merino, L. (2016). SGX Secure Enclaves in Practice: Security and Crypto
Review. Black Hat USA 2016. https://www.youtube.com/watch?v=0ZVFy4Qsryc

6.​ David, O. (2025). Abusing VBS Enclaves to Create Evasive Malware. Akamai Security Research
Blog.
https://www.akamai.com/blog/security-research/2025-february-abusing-vbs-enclaves-ev
asive-malware

7.​ AWS Samples (2024). AWS Nitro Enclave Large Language Models.
https://github.com/aws-samples/aws-nitro-enclaves-llm/

8.​ Biderman, D., Narayan, A., & Ré, C. (2025). Mind the Trust Gap: Fast, Private Local-to-Cloud
LLM Chat. Hazy Research Blog.
https://hazyresearch.stanford.edu/blog/2025-05-12-security

9.​ Amazon Web Services (2024). The Security Design of the AWS Nitro System: No AWS operator
access. AWS Whitepapers.
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/n
o-aws-operator-access.html

10.​ NCC Group (2023). Public Report - AWS Nitro System API & Security Claims.
https://www.nccgroup.com/us/research-blog/public-report-aws-nitro-system-api-securi
ty-claims/

11.​ Google Cloud (2025). Create and customize workloads - Confidential Space. Google Cloud
Documentation.
https://cloud.google.com/confidential-computing/confidential-space/docs/create-custom
ize-workloads

12.​ Google Cloud. Confidential Space security overview. Google Cloud Documentation.
https://cloud.google.com/docs/security/confidential-space

32

https://confidentialcomputing.io/wp-content/uploads/sites/10/2023/03/CCC-A-Technical-Analysis-of-Confidential-Computing-v1.3_unlocked.pdf
https://confidentialcomputing.io/wp-content/uploads/sites/10/2023/03/CCC-A-Technical-Analysis-of-Confidential-Computing-v1.3_unlocked.pdf
https://confidentialcomputing.io/wp-content/uploads/sites/10/2023/03/Common-Terminology-for-Confidential-Computing.pdf
https://confidentialcomputing.io/wp-content/uploads/sites/10/2023/03/Common-Terminology-for-Confidential-Computing.pdf
https://drive.google.com/file/d/13Pdz2x8mvkjkhxT6nyk8iZdovcN8KNyo/view
https://www.rand.org/pubs/research_reports/RRA2849-1.html
https://www.youtube.com/watch?v=0ZVFy4Qsryc
https://www.akamai.com/blog/security-research/2025-february-abusing-vbs-enclaves-evasive-malware
https://www.akamai.com/blog/security-research/2025-february-abusing-vbs-enclaves-evasive-malware
https://github.com/aws-samples/aws-nitro-enclaves-llm/
https://hazyresearch.stanford.edu/blog/2025-05-12-security
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/no-aws-operator-access.html
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/no-aws-operator-access.html
https://www.nccgroup.com/us/research-blog/public-report-aws-nitro-system-api-security-claims/
https://www.nccgroup.com/us/research-blog/public-report-aws-nitro-system-api-security-claims/
https://cloud.google.com/confidential-computing/confidential-space/docs/create-customize-workloads
https://cloud.google.com/confidential-computing/confidential-space/docs/create-customize-workloads
https://cloud.google.com/docs/security/confidential-space

	Confidential Inference Systems
	
	Overview
	What is confidential computing, in the context of AI inference?
	The confidentiality requirements
	Meeting the requirements with confidential computing
	Limitation of scope

	
	The two aspects of confidential inference
	The confidential data aspect
	Confidentiality and integrity requirements
	Optional authenticity and containment requirement
	Implementation examples

	The confidential model aspect
	Confidentiality and integrity requirements
	Authenticity and containment requirement
	Confidential computing for SL4 and SL5 security levels of model weights

	
	Service provider guarantees
	Hardware-based compute (CPU) and memory isolation
	Secure cryptographic attestation of the running workload
	Trusted Execution Environment (TEE)
	The relationship between the TEE and AI accelerators

	Restricted operator access

	Trusted execution environments with AI accelerators
	First approach: Native support within the AI accelerator
	Second approach: Bridging the CPU enclave to the accelerator

	Components and their design principles
	Confidential inference service
	Out-of-enclave programs
	The secure enclave
	Decryption of the model weights and architecture
	Encryption of the model inputs and outputs

	Model provisioning procedure
	KMS-based model encryption
	KMS monitoring and controlled availability
	Optional confidential model provisioning

	Enclave dev & build environment
	Enclave program source code assurance
	Enclave program binary assurance
	Third-party content in the enclave image
	Third-party tooling in the build environment

	
	Threat model, risks and attack scenarios
	The confidential inference threat model
	Systemic vs. introduced security risks
	Systemic risks
	Introduced risks
	Risks introduced in the confidential inference service
	Risks introduced in the model provisioning procedure
	Risks introduced in the dev & build environment

	
	References

