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Overview 
This whitepaper describes principles for designing a “confidential inference system” – a 
system that securely uses confidential computing technologies to implement an AI model 
inference service – typically used by generative AI applications, such as chat assistants and 
image generators – that protects the confidentiality of user data (model inputs and 
outputs) and/or the AI model itself (its weights and architecture). 
 
The structure of this whitepaper is as follows: 

● This “Overview” section provides an overview of what the confidential computing 
use cases and guarantees are in the context of AI inference. 

● The section “The two aspects of confidential inference” provides a high-level 
description of what confidential inference systems aim to achieve, both with 
confidential data and with confidential models. 

● The section “Service provider guarantees” details what the service provider (typically 
a cloud service provider) guarantees the other parties in order to ensure 
confidentiality. 

● The section “Trusted execution environments with AI accelerators” details 
approaches to including AI accelerators in the confidential inference system. 

● The section “Components and their design principles” presents a sketch, or reference 
design, of a confidential inference system implementing both the confidential data 
and the confidential model aspects, and dives into some principles involved in the 
design of such a system. 

● The section “Threat model, risks and attack scenarios”, while not a comprehensive 
security review of a complete design or implementation, goes over some of the 
major security threats involved with confidential inference. 

What is confidential computing, in the context of AI inference? 

The Confidential Computing Consortium defines Confidential Computing ([1], section 2) as: 
 

Confidential Computing is the protection of data in use by performing 
computation in a hardware-based, attested Trusted Execution Environment. 

 
It also highlights AI inference as a key use case for confidential computing technologies [3]. 
 
Typically, three parties are involved in AI inference computations: 

1. The model owner. Usually, this is the organization that built/trained the model, and 
owns the model architecture and model weights. In some cases, such as when a 
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base model is fine-tuned on proprietary data, the model owner may be the 
organization that adapted the model. 

2. The data owner / end user. The data owner owns data that they wish to provide as 
input to an AI inference service, and receive its output. 

3. The service provider. This is either a cloud service provider, or an on-prem 
compute service. There are two options for what the service provider provides: 

a. Infrastructure-as-a-service (IaaS): Virtual machines, AI accelerators, private 
networks, storage, key management systems and other cloud services, on top 
of which the model owner builds their AI inference service. 

b. “Inference-as-a-service”: A cloud service which provides AI inference APIs. 
Examples of cloud platforms with AI inference services include Amazon 
Bedrock on AWS, Vertex AI on GCP, and Azure AI services. 

The confidentiality requirements 

An inference computation typically consists of performing forward propagation through a 
deep neural network with many1 parameters (model inputs and model weights), generating 
a result (model outputs). The parameters are used in mathematical operations, such as 
matrix multiplication. The precise order and layout of these mathematical operations are 
essentially the model architecture. The operations require direct access to the 
input/weight parameter values, and yield direct access to the output values. 
 
Therefore, the computation requires full access2 to the inputs, outputs, and weights. 
However, for various reasons, including business, security, privacy, and compliance, the 
parties wish to perform the computation confidentially: 

1. The model owner wants to keep the model architecture and weights confidential, 
without needing to trust the other two parties. 

2. The data owner wants to keep the model inputs and outputs confidential, without 
needing to trust the other two parties. 

3. The service provider wants to host the AI service while assuring the other two 
parties that it cannot access their weights and data. 

2 Ideas such as Homomorphic Encryption – making computations without decrypting the 
parameters – have not yet matured enough to be usable in the scale and performance required for AI 
inference, leading to full decryption being a requirement for successfully performing an inference 
computation. 

1 In today’s largest models, the amount of parameters ranges from hundreds of billions to a few 
trillions. 
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Meeting the requirements with confidential computing 

Confidential computing technologies include the ability to set up Trusted Execution 
Environments (TEEs), having the following properties: 

1. With hardware support, the memory of the TEE is inaccessible, even to the 
operating system kernel. 

2. Similarly, debugging features like breakpoints, traces, counters, etc. are disabled 
inside the TEE, making it impossible to monitor or alter execution. 

3. The TEE can produce a cryptographically-signed proof (“attestation document”) 
proving that it is running the expected code (the image was not tampered with). 

 
Confidential computing TEEs are the basis for confidential inference systems where the 
requirements of all parties can be met. The design principles for such a system, and the 
associated security risks, are detailed in this document. 
 
For the definitions and technical analysis of confidential computing technologies used in 
this document, see [1] and [2]. 

Limitation of scope 

● This document discusses the confidentiality of the model only during the inference 
computation. Other procedures in the model’s lifetime are not discussed. For 
example, insecure backups of the model weights may defeat their confidentiality. 

● This document focuses specifically on inference. Although confidential computing is 
also relevant for other AI use cases where confidential access to the model is 
desired (such as training, fine-tuning based on proprietary data, interpretability 
research, and others), these use cases are out of scope for this document. 
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The two aspects of confidential inference 
This section includes an overview of the two aspects of confidential inference: 

1. The data aspect: The inputs and outputs of the model are confidential. 
2. The model aspect: The model weights and architecture are confidential. 

 
The two aspects are independent of each other, but not mutually exclusive; a confidential 
inference system may implement either aspect, or both of them. While the confidentiality 
goals are similar, the characteristics and data paths are different, and require separate 
designs. 

The confidential data aspect 

In the confidential data aspect, the user data (inputs and outputs of the model) are kept 
confidential. This may consist of: 

● Simple ephemeral input/output pairs (as used in chat assistants, image generators, 
and other AI applications). 

● Input/output data that is retrieved from storage, cache or external sources (as used 
in generative AI features such as RAG, prompt caching, and MCP). 

 
Confidential inference systems with confidential data may be used to ensure data privacy, 
and allow the use of AI applications to process PII, PHI, or other private data, even as the 
data leaves the customer’s network to be processed in the service provider’s network. 

Confidentiality and integrity requirements 
From the data owner’s point of view, this aspect of confidential computing is similar to 
requiring an end-to-end-encrypted communication channel with the AI model, where 
nobody except the data owner and the AI model itself can access (read and/or manipulate) 
the data. The host which runs the model, including other applications running on this host, 
should have no way to access the data. 

Optional authenticity and containment requirement 
As part of the confidential data aspect, it is beneficial to let the data owner have a way to 
audit the workload accessing and processing their data: 

● The data owner should be able to verify the workload’s authenticity, confirming it is 
indeed the AI model inference system and not a deceptive, malicious workload. 

● The data owner should be able to audit the flow of their private data within the 
workload. This auditing capability allows the data owner to ensure that their data is 
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contained within the AI inference system, processed solely for essential AI inference 
purposes, and is not saved, copied or logged in a way that allows subsequent access. 

 
With this requirement implemented, the data owner can verify independently that the data 
is processed confidentially by the AI model (based on the service provider guarantees, 
detailed below). Without it, the data could still be processed confidentially - but the data 
owner must explicitly trust the model owner, not just the service provider. 

Implementation examples 
An example project implementing a confidential inference system with confidential data 
based on AWS Nitro Enclaves can be found in [7]. 
 
An exploratory work implementing a confidential inference system with confidential data 
based on NVIDIA H100 can be found in [8]. 

The confidential model aspect 

In the confidential model aspect, the model parameters (that is, its weights and 
architecture) are kept confidential. This aspect is beneficial for AI model 
manufacturers/owners, and they can use the confidential inference system in order to: 

● Deploy their AI models to cloud service providers without sharing the model with 
the service provider. 

● Decrease network latency and enable real-time AI applications by deploying their AI 
models to edge service providers without sharing the model with the service 
provider. 

● Deploy their AI models to customers (on-premises / private-cloud deployments) 
without sharing the model with the customer. 

Confidentiality and integrity requirements 
The AI model owner requires a way to share the model weights and architecture with the 
inference service in such a way that only the inference service can have access to them. 
Other processes running on the host, including the operating system kernel, should not be 
able to access these parameters. 
The confidentiality requirement extends to requiring defenses against efforts to 
reverse-engineer and extract the model weights and architecture from the deployed 
model. 
Furthermore, for models that demonstrate dangerous capabilities, requiring security level 
SL4 or above (detailed in the subsection below), the model owner may wish to isolate the 
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model weights and keep them confidential from their inception (initial pretraining), so they 
are not directly accessible even to the model owner itself. 

Authenticity and containment requirement 
It is required that the AI model owner has a way to confirm that the workload accessing the 
model weights and architecture is the workload that they have authorized to access the 
weights, and not a malicious workload. They must also be able to audit the data path of the 
weights in this workload. This way, the model owner can ensure that the weights and 
architecture are contained within the confidential boundary, and are not duplicated, logged 
or copied outside of this boundary. 

Confidential computing for SL4 and SL5 security levels of model 
weights 
The RAND research report “Securing AI Model Weights” [4] defines five security levels for 
model weights. The top two security levels, SL4 and SL5, are designed for systems that can 
withstand weight theft attempts by threat actors ranging from leading cyber-capable 
institutions and state-sponsored groups to the world’s most capable nation-states. These 
security levels are recommended for models that demonstrate dangerous capabilities, such 
that the risks associated with the theft of their weights are high. 
 
For models that require an SL4 or SL5 security level, the report strongly recommends that 
confidential computing technologies be used, when available, for securing the model 
weights. The report requires making the following assurances: 

● The TEE includes protections against physical attacks. 
● Model weights are encrypted by a key that is confidentially generated and stored 

within the TEE. 
● The code running within the TEE is prespecified, audited, and signed. The audit 

process ensures that the TEE does not leak the weights, and only uses them directly 
as necessary in the AI workload. 
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Service provider guarantees 
The service provider makes guarantees that enable the implementation of the confidential 
AI inference system. These guarantees are critical to ensure that nobody except the data 
owner (end user) can access the user data, and that nobody except the model owner can 
access the model weights and architecture. Service provider operators and unauthorized 
applications (and by extension, attackers who have compromised the hosts or 
infrastructure running the confidential AI inference system) are therefore restricted from 
accessing this confidential data. 
 
Three major cloud service providers - AWS, GCP, and Azure - have implementations of 
confidential computing solutions: AWS Nitro System with Nitro Enclaves, GCP Confidential 
VMs with Confidential Space, and Azure Confidential VMs. These implementations make 
some of the guarantees described in this section. 

Hardware-based compute (CPU) and memory isolation 

At the heart of confidential computing technologies is the isolation of confidential 
workloads from the other workloads. This is done by isolating a process, a container (or 
Kubernetes pod), or an entire virtual machine (or Kubernetes node), so that the instructions 
it executes and the memory it uses are not accessible to other processes, containers, or 
virtual machines, even by the operating system kernel or hypervisor. This includes 
protections such as disabling monitoring or debugging facilities, encrypting memory, and 
protections against side-channel attacks. 
 
Software is not enough for these protections - for example, a software-only kernel 
module/driver implementing process isolation could be disabled/bypassed via another 
kernel module. These protections are therefore implemented in hardware, using 
technologies such as Intel SGX, Intel TDX, AMD SEV/SEV-SNP, and AWS Nitro System. 

Secure cryptographic attestation of the running workload 

The hardware powering the confidential computing technology can be used to securely 
attest the code running in the confidential inference system is the expected (and 
authorized) code. This is done using TPM (Trusted Platform Module) hardware, producing 
measurements of the workload binaries, the underlying operating system, and the low-level 
boot process itself (known as measured boot). These measurements, presented as PCR 
(Platform Configuration Register) values, are included in an attestation document that is 
cryptographically signed by the hardware, using a hardware-based root of trust. This 
attestation document is used for validating the running workload. 
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The service provider must guarantee that the hardware-based root of trust is not 
compromised (e.g. its private key is not leaked), and that it correctly measures and signs 
the PCR values, so that the attestation document cannot be forged by an attacker. 

Trusted Execution Environment (TEE) 

The compute and memory isolation and encryption, together with secure attestation, are 
used in order to form a trusted execution environment (TEE), sometimes referred to as a 
secure enclave or a confidential boundary, in which data can be processed confidentially. 
The service provider may provide methods to decrypt confidential data only within the 
TEE. One way to do it is by introducing KMS policies, allowing decryption only when the 
request comes from within the TEE, which can be verified using the attestation procedure. 
Another way is to generate the encryption keys (possibly ephemeral keys) within the TEE. 

The relationship between the TEE and AI accelerators 
As part of AI inference, data which is considered confidential (user data, model weights, 
model architecture) needs to be transferred from the CPU to AI accelerators (GPUs/NPUs) 
and back. This is detailed further in the next section. 

Restricted operator access 

Both the model owner and the data owner benefit from reduced access by service provider 
operators to the decrypted confidential data and parameters, and the service provider can 
(optionally) make guarantees in this area. 
 
One possibility for restricting operator access is avoiding installation of control programs 
(“agents”) inside virtual machines and cloud-hosted services, and leaving the entire data 
plane to the service provider’s customer (the model owner). 
 
Typically with cloud service providers, even if there is restricted access by operators to the 
data plane (e.g. remotely connecting to virtual machines or other cloud-hosted services), 
there is still a control plane: A set of administration interfaces, where these services can be 
shut down, duplicated, or reconfigured, including security policy reconfiguration. One 
more possibility for restricting operator access is restricting operator access to this control 
plane as well. 
 
An example implementation of restricted operator access can be found in AWS Nitro 
System, which is designed to prevent operator access entirely - see [9]. This guarantee is 
also included in the Service Terms for AWS Nitro System. It can be difficult for parties 

11 



 
 

outside the service provider to verify the implementation of restricted operator access 
controls; in the case of AWS Nitro System, this was verified by a third party - see [10]. 

Trusted execution environments with AI accelerators 
AI accelerators (GPUs/NPUs) are essential, critical components of training and inference 
systems for many modern AI models. They are physically separate from the main CPU; 
therefore, care must be taken to ensure that the confidential boundary extends to the 
accelerator. The main issue is that, as part of inference, data which is considered 
confidential (user data, model weights, model architecture) needs to be transferred 
between the CPU and the accelerators. A second issue is debugging features (such as 
memory dumps) and measuring features (such as performance counters) which may be 
used to circumvent the confidential boundary on the accelerator. 
 
Note that AI inference systems might make use of an array of multiple AI accelerators that 
share the workload, connected to each other via high-speed connections (such as NVLink, 
InfiniBand, or others). In this case, the security of these inter-accelerator connections is 
beyond the scope of this document; for the purpose of this document, the AI accelerator is 
treated as a discrete hardware device connected to the host. 
 
There are two approaches to including AI accelerators in a confidential inference system: 

First approach: Native support within the AI accelerator 

In this approach, the accelerator hardware includes features that can be used to implement 
a TEE, as described above (isolation, encryption and attestation), within the accelerator 
itself. The accelerator receives encrypted confidential parameters (user data, model 
weights and architectural parameters), natively decrypts them as needed, and the 
unencrypted data resides only in the accelerator’s private memory; the output is encrypted 
before it’s sent out of the accelerator. Furthermore, the accelerator disables debugging and 
measurement features for the duration of the computation, in order to provide compute 
isolation, and includes secure attestation features, in order to allow verification of the 
computation it performs. 
 
There are two possibilities for how the encrypted confidential parameters are delivered 
to/from the AI accelerator: 

1. End-to-end parameter transfer (single TEE): The key used to decrypt/encrypt the 
confidential data is only accessible within the accelerator TEE: Either it is generated 
by the accelerator and does not leave it, or it is an outside key (e.g. on a KMS) that 
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can only be accessed from within the accelerator, based on a policy that validates 
the accelerator-generated attestation document. End-to-end parameter transfer 
means that only the accelerator TEE does any data processing; any non-accelerator 
(CPU) inference system application cannot access the data, and at most, can only 
function as a “router”, blindly transferring encrypted, inaccessible data. Therefore, 
only the accelerator TEE is required for the confidential inference system, and 
relevant applications running on the host do not have to run in any TEE. 

2. Host-to-accelerator direct parameter transfer (two TEEs): The accelerator 
supports confidential data sharing “locally” (with the CPU), e.g. via an encrypted 
shared memory buffer. This secure channel is established between the CPU and the 
accelerator, so the application running on the CPU needs access to the plain data in 
order to encrypt it in a way that the accelerator can access. Since the data is 
confidential, this requires an additional TEE on the CPU, in which the confidential 
data is decrypted; it is then re-encrypted for the accelerator, and sent out of the 
CPU-based TEE into the accelerator-based TEE for decryption and processing. 

 
An example of AI accelerators with native support for confidential computing is 
Confidential Computing on NVIDIA H100 GPUs. An exploratory work using this can be 
found in [8]. 

Second approach: Bridging the CPU enclave to the accelerator 

In this approach, the accelerator does not natively support confidential computing (or 
these features are not used). Instead, the accelerator is bridged or “attached” to the TEE on 
the CPU, so it becomes a hardware extension to this TEE. Note that this approach is not 
airtight, and may be susceptible to some attacks, such as certain side-channel attacks, as 
the delivery of the confidential data from the CPU to the GPU is not encrypted in this 
approach. Other protection features, like memory encryption, isolation within the 
accelerator, and disabling debugging/monitoring features on the accelerator are required 
to form a secure solution. 
 
There are two ways to implement this approach: 

1. Hardware-enforced TEE-only access: Hardware features in the CPU or hypervisor 
are used to ensure that only the TEE is able to access the accelerator (e.g. the PCIe 
bus). These features may include CPU core allocation (only the cores that are 
allocated to the TEE are allowed to run code which accesses the accelerator) and 
write-only memory (a memory range in the accelerator that can only be written, 
where input parameters are loaded, and only the accelerator may read them; and a 
memory range in the TEE that can only be written, where output parameters are 
returned, and only the TEE may read them). 
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2. The entire VM is the TEE: If the entire VM is treated as the TEE, then there is no 
need for special handling - the accelerator is, by definition, inside the confidential 
boundary. However, this option could introduce additional attack surface (namely, 
the operating system and the services running on it), which could be avoided with a 
leaner TEE. 

Components and their design principles 

 
 
There are three major components of a confidential inference system, illustrated above: 

1. Confidential inference service. 
2. Model provisioning procedure. 
3. Enclave dev & build environment. 

Confidential inference service 

The confidential inference service component is responsible for receiving the model 
input, weights and architecture, executing the model, and sending out the model output. 
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A reference design of the confidential inference service consists of a host, owned by the 
service/compute provider, running two sub-components: 

1. Secure enclave program. A program running as a secure enclave / trusted 
execution environment (TEE) on this host, which makes up a “confidential 
boundary” in which plain (unencrypted) weights and data may be present. The 
enclave cannot communicate with the outside world apart from a specific 
predefined tunnel interface for communicating with the host. This program could 
run either on the CPU or on the AI accelerator; see also the section “Trusted 
execution environments with AI accelerators” above. 

2. Out-of-enclave programs & communication proxies. Programs running on this host 
outside of the TEE, including a “loader” program which is responsible for loading the 
secure enclave and communicating with it over the specially-defined tunnel. This 
tunnel is meant for facilitating communication between the enclave and any 
external resources, such as storage buckets for obtaining the encrypted model 
weights, the model owner’s KMS for weight decryption, and communication of 
model input & output with the data owner. 

Out-of-enclave programs 
The programs running directly on the host are owned and operated by the service 
provider. They are responsible for launching the enclave, ensuring that it is a valid enclave 
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(also known as an authenticated launch, implemented using cryptographic attestation) and 
communicating with it. 

The secure enclave 
The content (source code and files on the file system) of the enclave image is normally not 
confidential to any party (that is, it is not encrypted at all); rather, the data that it is 
designed to handle and run computations on is confidential. For the inference use case, the 
purpose of the image is to be a model loader and invoker. That is, it receives and decrypts 
model parameters (architecture and weights) from the model owner, and model inputs 
from the data owner; it loads the model, and invokes it to produce model outputs. The 
loader and invoker must be developed in a generic manner – agnostic to the model 
architecture and weights; particularly, it cannot contain any secrets owned by the model 
owner, because these may easily be revealed by reverse-engineering the image. 
 
Furthermore, it is in the model owner’s interest that the model architecture & weights are 
not leaked by the enclave; and it is in the service provider’s and data owner’s interests that 
the model inputs & outputs are not leaked by the enclave. Therefore, although the program 
running in the secure enclave is capable of decrypting weights and inputs (in fact, it must 
do this), it has the requirement that it must not do anything with them that is not 
absolutely required for inference. For example, it must not leak the decrypted weights 
through the available communication interface. 
 
Note that since the enclave is a loader, the same enclave program may be used for different 
models. A well-designed enclave program may be usable for a wide range of models, and 
might not require frequent changes. 

Decryption of the model weights and architecture 
Outside of the confidential boundary, the model parameters (weights and architecture) are 
stored encrypted at rest (see also the “Model provisioning” section below). It can be 
assumed that the encrypted parameters can be copied into the secure enclave, where they 
are ready to be decrypted. 
 
Under this assumption, the question is how to provide the secure enclave with the data 
decryption key (or, in the common case of envelope encryption, how to unwrap the data 
encryption key). A reference design of how to do this is as follows: 

1. An external KMS holds the data decryption key. (For envelope encryption, it holds 
the key encryption key, known as “KEK”, which can be used to “unwrap” the wrapped 
data encryption key, known as “DEK”). 
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2. The enclave can communicate with the KMS over the communication channel 
facilitated by the programs running outside of the TEE. A secure communication 
channel is established (using a protocol such as TLS). 

3. The enclave provides a signed attestation document to the KMS, proving its identity. 
The attestation document contains a signed ephemeral public key. 

4. The KMS verifies the attestation document, and then encrypts the data encryption 
key with the ephemeral public key and sends it back to the enclave. (For 
envelope-encrypted weights, the enclave first provides the wrapped data 
encryption key, and the KMS unwraps it.) 

Encryption of the model inputs and outputs 
There are two approaches to encryption of the model inputs and outputs: 

1. Encryption termination at the service provider: The client encrypts the model 
inputs, and they are decrypted by the service provider, which forwards them to the 
confidential inference service. 

2. End-to-end encryption (E2EE): The client encrypts the model inputs, and they are 
decrypted only inside the TEE. 

(In both approaches, the outputs are handled in the same way, in reverse direction.) 
 
In the first approach, the data owner shares their data with the service provider (but not 
with the model owner), and does not implement the confidential data aspect of the 
confidential inference system. The client sends the model inputs to the service over a 
secure protocol such as TLS. The service decrypts the model inputs, and simply sends them 
directly to the TEE. (At this point, there is no point in re-encrypting the model inputs upon 
entering the enclave, as they are already accessible to the service provider.) 
 
In the second approach, the data owner does not share their data, thus implementing the 
confidential data aspect of the confidential inference system. There are a few options for 
how to implement this: 

1. The client receives an attestation document from the enclave, and validates it. Then, 
it uses the signed public key from the attestation document in order to send the 
encrypted data to the service, encrypted (e.g. envelope-encrypted) in a way that 
only the enclave is able to decrypt it. 

2. The client uses a KMS in order to encrypt the data; the KMS is configured with a 
policy that will only allow the enclave (based on a signed attestation document) to 
decrypt the data. This method is used, for example, in [7]. 
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Model provisioning procedure 

The model provisioning procedure component consists of methods to prepare the model 
for use within the confidential inference system. That is, to encrypt the model so that it 
may be stored encrypted, and only decrypted within the confidential boundary of the 
confidential inference service. 

 
 
In general, as part of the model provisioning procedure, model parameters (architecture 
and weights) should be encrypted with strong encryption, and the encrypted weights are 
assumed to be opaque and impossible to decrypt without access to the encryption key. 
Therefore, the encrypted parameters may be stored at rest with a lower security level than 
the confidential boundary (e.g. in cloud storage). 

KMS-based model encryption 
Some advantages of using a key management system (KMS) to encrypt model parameters 
are: 

● Good KMS implementations never leak encryption keys, and strictly limit the 
operations that can be performed with the keys to a well-defined API (e.g. a 
“decrypt” API operation). Using a KMS therefore eliminates the inference system’s 
need to handle encryption keys by itself, and reduces security risks associated with 
the encryption key handling. 
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● Moreover, this changes the conditions required for being able to decrypt the model 
parameters. Instead of “knowing the key”, the condition becomes “having 
authorization in the KMS API policy”. 

● Some cloud-based KMS implementations have native support for policies 
authorizing secure enclave access, and these can be used. 

 
There are three possible places that this KMS may reside: 

1. Cloud-native KMS, on a cloud account belonging to the model owner, on the same 
cloud service provider that hosts the inference service. 

2. Custom (not cloud-native) KMS, on a machine that belongs to the model owner, 
possibly on a different cloud service provider (or on-prem host) than the one 
hosting the inference service. 

3. Custom KMS, running as an additional service inside the secure enclave defined 
above (as part of the confidential inference service component). 

 
The most convenient option is the first option: Cloud-native KMS. This may benefit from 
native support for authorizing secure enclave access. However, a security tradeoff is made 
with this choice. Within the threat model of the system, the model owner may choose not 
to trust the service provider, or its account on it; the potential compromise of both of them 
are in scope within the threat model. Such a compromise would allow a threat actor to 
decrypt the model parameters. As an example, consider that an AWS-based model owner’s 
AWS admin account is compromised; then the threat actor can discover the encrypted 
model weights on an S3 storage bucket, and discover the AWS KMS CMK used to encrypt 
them. With a simple policy edit, the threat actor can give themselves decryption access on 
the KMS API, and use it to decrypt the weights. 
 
The second option, a custom KMS running on a host owned by the model owner, eliminates 
the risk of policy edits by a threat actor. However, it introduces a couple of additional risks: 

1. Communication with the KMS now needs to happen over an external network (e.g. 
the Internet) and this connection must be secured. 

2. The KMS must be built securely, including adequate protection of its keys, which 
may be a challenging engineering task. 

3. The KMS must be able to correctly validate secure enclave attestation documents 
generated by the confidential inference service, which may also be a challenging 
engineering task having potential security pitfalls. 

 
The third option, a custom KMS running as an additional service inside the confidential 
inference TEE, eliminates once again the risk of external communication, but retains the 
challenges of engineering the KMS. The benefit of this is that the encryption key is 
generated in, and never leaves, the confidential boundary of the TEE. Note that: 
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● According to the RAND research report “Securing AI Model Weights” [4], models 
requiring security level SL4 or SL5 need to use TEE-isolated weight encryption keys, 
effectively requiring this option. 

● In some of the current implementations of VM-based secure enclaves, it is not easy 
to implement a KMS inside a secure enclave if there is no persistent storage or a 
reproducible source of confidential random number generation available. It is 
possible to implement a KMS inside an enclave which is always up, using the 
enclave’s encrypted RAM as secure storage; this introduces further engineering 
complications. 

KMS monitoring and controlled availability 
In any of the above approaches, it is important to monitor (log) the use of the KMS to 
decrypt the model weights, in order to track down illicit uses. Furthermore, for particularly 
risky models with strictly controlled access, it may be considered to introduce “controlled 
availability” for the KMS: Keep the KMS offline (“cold”) by default, and connect it to the 
system (either automatically or manually, depending on the use case) only when the model 
weights need to actually be decrypted by the secure inference service. This reduces the 
risk of unexpected out-of-band KMS decryption access attempts by a threat actor. 

Optional confidential model provisioning 
Normally, a model can be provisioned for the confidential inference system once it is 
“ready” – that is, once its training / post-training / fine-tuning steps (colloquially, “model 
finalization steps”) are completed and its architecture and weights are finalized. Assuming 
these model finalization steps occur outside of a TEE, the model parameters exist in an 
unencrypted form outside of the TEE at this “pre-provisioning” stage (e.g. in storage owned 
by the model owner). 
 
In some cases, model weights may need to be confidential even during or immediately after 
training/finalization, including the model owner themselves being restricted from having 
access to their own model’s weights. This could be suitable for models requiring SL4 or SL5 
security levels (see [4]). This is beyond the scope of the confidential inference system; 
however, we still mention it here, because it is adjacent, and crucial for the protection of 
the model weights. There are generally two ways to achieve this: 

1. Best-effort secure training and immediate destruction: Harden the security 
controls on the servers / workloads that perform the model training, weight 
finalizations, and confidential inference provisioning. Upon provisioning, the 
unencrypted model parameters should be destroyed (the tradeoff being that if they 
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are not destroyed, the existence of their unencrypted copy may form an easier 
opportunity for their theft). 

2. Confidential training and provisioning: Perform the model training and finalization 
steps inside a TEE (the design principles of which are beyond the scope of this 
document), and provision the model parameters for confidential inference from 
within this TEE. 

Enclave dev & build environment 

The enclave dev & build environment consists of the environment that needs to be set up 
to develop and build (and “package”, in the terminology used by the Confidential Computing 
Consortium - see [2]) the secure enclave that is set up and used in the confidential 
inference service. 
 

 
 
In VM-based TEE technologies, the secure enclave must be built, packaged and measured3 
in order to later validate that the expected enclave is running in the TEE. For example, in 
AWS Nitro Enclaves, this process consists of building a Docker image, and then packaging it 
to an “EIF” (Enclave Image File) format. In GCP Confidential Space, it consists of building a 
Docker image, and then signing its measurements. 

3 Measurement is the process of computing hashes over certain properties of the secure enclave. 
These measurements are included in the cryptographically-signed attestation document that the 
enclave produces. 
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Enclave program source code assurance 
As explained above, it is in the interest of all parties that the enclave does not leak one 
party’s data or parameters. In order to assure all parties of this, the enclave program source 
code must be made available for audit by all parties. In other words, program may have one 
of the following styles of code ownership: 

● Shared-source, with the source code of the program being co-owned by the model 
owner and the service provider. This way, the model owner can audit the code and 
ensure that it does not leak or manipulate the model weights, while the service 
provider can ensure that the code does not leak or manipulate its clients’ data. 

● Open-source, with the source code of the program being made available for anyone 
to audit, and maintained by the model owner and the service provider (or possibly a 
separate, third-party open-source project maintainer). In addition to the above, this 
also allows the third party – the data owner – to audit the code and ensure that its 
data is not being leaked or manipulated. 

Enclave program binary assurance 
Even when all parties are assured, through source code audits, that the enclave program 
does not leak data or parameters, there is still the possibility that the compiled binary does 
not fully match the source code. This way, additional capabilities (or bugs / vulnerabilities) 
may be introduced to the image, which allow leak / theft of data or parameters. 
 
One important case where this could happen is the case that the build environment is 
compromised; the build environment is an extremely fruitful target for executing a supply 
chain attack, allowing attackers to inject malicious code into the enclave where model 
weights and data are decrypted. Therefore, the build environment must be hardened 
against compromise. 
 
Even if the build environment is not compromised, simply having one of the involved 
parties own and control the build is enough to break the assurance. For example, if the 
model owner builds the enclave, the service provider and data owner cannot be sure that 
the model owner has not added functionality to reveal the data; similarly, if the service 
provider builds the enclave, the model owner cannot be sure that there is no added 
functionality to reveal the model weights. 
 
There are three approaches for achieving binary assurance: 
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Approach #1: Fully reproducible build process 
The enclave program is built using a fully reproducible build process. This way, one party (it 
does not matter which one) builds the enclave program, and publishes the binary; the other 
parties also build the program, and compare their result to the published binary. The 
additional builds are discarded and not used, but the comparison achieves the required 
binary assurance. 
 
Note that, in many cases, the build process has 3 major build steps: 

1. Build the program binary with a compiler (such as gcc) - unless it is written in an 
interpreted language (such as Python). 

2. Build a container image with a container image builder (such as Docker). 
3. Package an enclave image with an enclave image packager (such as the AWS Nitro 

Enclaves builder), or sign its measurements (e.g. the GCP Confidential Space build 
process). 

 
In a fully reproducible build process, all steps of the build process must be reproducible. 
 
An example of an enclave image build system which supports reproducible builds is Bazel, 
which can be used for building Confidential Space images for GCP. See also [11]. 
 
Approach #2: Binary analysis 
Lacking a fully reproducible build process, the enclave program binary may be compared 
with the source code by using binary analysis tools, such as BinDiff, to analyze the 
compiled binary. 
 
Approach #3: Using a pre-built, pre-assured third-party or open-source binary 
In the “third-party” / “open-source” style of ownership, the enclave program is owned by a 
separate, third-party / open-source “enclave owner”. The enclave owner may build the 
enclave and publish the binary, and then they (or the open-source community) may publish 
their assurances of the image using methods such as the two described above (a fully 
reproducible build process, or binary analysis). Note that, especially if relying on the 
open-source community, care must be taken to ensure that the assurances are legitimate 
and verifiable. 

Third-party content in the enclave image 
The enclave image contains third-party content, such as a container base image (e.g. a 
Docker base image), a language interpreter (e.g. Python), a suite of precompiled code 
libraries, and others. This content poses risk to the integrity of the enclave program; bugs, 
vulnerabilities or upstream supply chain compromises of this content could cause the 

23 

https://github.com/bazelbuild/rules_docker
https://github.com/google/bindiff


 
 

enclave program to be compromised, or to make it possible to leverage the enclave 
program for stealing model parameters or data. 
 
In order to reduce the attack surface, the usage of third-party content should be reduced 
to a minimum. For example, it is advisable to use an empty base image (Docker “FROM 
scratch”), only bringing in the required libraries for loading the enclave; to remove any 
unnecessary dependencies; and to audit any dependencies that are required and cannot be 
removed. 

Third-party tooling in the build environment 
The build environment is likely to contain third-party tooling, such as a compiler, a 
container image builder, and a suite of shell utilities. Care must be taken when setting up 
the build environment that these tools are vetted, as any bugs or upstream supply chain 
compromise of these tools could lead to a compromise of the built enclave image. 
 
One example of a build environment that is not set up securely can be found in the Black 
Hat USA 2016 talk “SGX Secure Enclaves in Practice: Security and Crypto Review” [5], in 
which it was demonstrated that enclave build utilities were downloaded from the vendor 
website over an insecure plain-http connection, providing attackers having sufficient 
access to the network with the opportunity to inject malware into the downloaded build 
tools. 
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Threat model, risks and attack scenarios 
This section includes some of the threats involved with the design of confidential inference 
systems. While not a comprehensive security review of a complete design or 
implementation, it goes over the major threats. Other, more specific security reviews exist, 
such as Google’s overview of Confidential Space [12], and they complement this section. 

The confidential inference threat model 

The threats considered in confidential computing are threats to the integrity of the code 
and confidentiality of the data inside the TEE, where the threat actors are assumed to have 
control over everything outside of the TEE. This assumption can be realized through a 
cyber attack or insider threat; additionally, in the multi-party context described here (e.g. a 
model owner and a separate data owner), this assumption is realized through each party 
not trusting the other parties, and requiring assurances that the other parties cannot 
access their data. 
 
The general threat model for confidential computing is described by the Confidential 
Computing Consortium ([1], section 5) as such: 
 

Confidential Computing aims to reduce the ability for the 
owner/operator/pwner of a platform to access data and code inside TEEs 
sufficiently such that this path is not an economically or logically viable attack 
during execution. 

 
Therefore, within the threat model of confidential inference systems: 

● The threat actor can be assumed to have complete control over any machine / VM 
associated with the inference system, including machines where a secure enclave is 
loaded (in the terms used in this document - the Confidential Inference Service 
out-of-enclave programs). 

● The threat actor can be assumed to have complete control over any cloud or 
on-prem network resources associated with the inference system, including storage 
buckets where encrypted weights are stored. 

● For the purpose of confidentiality assurance, it can be assumed that each party does 
not trust the other parties; in other words, each party assumes the other parties to 
be “threat actors”, in the sense that having them gain access to confidential data is 
considered a threat within the threat model. 

 
Regarding the three major components of confidential inference as described in this 
document: 
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● The confidential inference service is the backbone of the system. This is the 
component holding the TEE in which the model architecture, weights, inputs and 
outputs are decrypted and/or held unencrypted, and is a prime target for attack. 

● The model provisioning procedure is where the model architecture and weights are 
encrypted, and stored/downloaded in their encrypted form. This is a potentially hot 
target for attacks, particularly cryptographic attacks. 

● The enclave build environment is a lucrative target for supply-chain attacks, 
because controlling this environment gives a threat actor easier access to the TEE 
holding the unencrypted model parameters and data. 

Systemic vs. introduced security risks 

There are two different kinds of risks: 
● Systemic risks - risks which are inherent in the confidential computing system 

components that are relied upon by the inference system. Some, but not all, of these 
risks may be considered to be out-of-scope in the confidential inference threat 
model. 
 
In order to mitigate these risks, the inference system implementers need to be on 
the alert for publicly disclosed vulnerabilities and/or publicly uncovered cyber 
operations, and install any patches in a timely manner. Moreover, according to the 
RAND research report “Securing AI Model Weights” [4], for models requiring the top 
security level (SL5), it is recommended that the model owners employ a team of 
experts who proactively search for zero-day vulnerabilities in components related 
to securing model weights; this includes all confidential computing system 
components, and is a way to further reduce these systemic risks. 
 

● Introduced risks - risks which are introduced by the implementation of the 
confidential inference system. These risks are related to insufficiently secure design, 
implementation or configuration of the inference system itself, even assuming 
security of the individual confidential computing components that it comprises. 
 
To mitigate these risks, the inference system implementers need to ensure the 
system is implemented securely, practice defense in depth, and audit the security of 
the system through security reviews and red-team engagements. 

Systemic risks 

Flaw in the implementation of the secure enclave, including the hardware and software 
powering it. Confidential inference relies heavily on the security of the secure enclave. 
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● Flaws in the hardware implementation of VM-based CPU and memory isolation. This 
includes CPU cache / side channel attacks on the memory isolation technology, and 
also includes physical access attacks, such as cold boot attacks. 

● Flaws in the kernel driver for the secure enclave (e.g. “nsm.ko” for the AWS Nitro 
Secure Module) which is responsible for communicating with the hypervisor from 
within the enclave and requesting an attestation document from it. 

● Flaws in the base enclave software (e.g. the Nitro Secure Module software 
components, such as the “nitro-cli” enclave loader and “vsock-proxy”). 

● Flaws in the hypervisor, which allow circumventing isolation (e.g. with a 
guest-to-host escape vulnerability or a guest-to-guest lateral movement 
vulnerability) or forging cryptographic attestation signatures. 

 
Flaw in the AI accelerator’s confidential computing technologies. Inference requires AI 
accelerators, and they must properly be included within the confidential boundary. 

● Flaws in the hardware, firmware, or driver implementation of NPU and memory 
isolation in the AI accelerator. This includes the ability to read confidential memory 
regions via the CPU, to enable debugging features (breakpoint, monitoring, 
counters, etc.) on the NPU, to use side-channel methods to discover the contents of 
isolated memory, or to sideload additional NPU programs which can access 
confidential memory from within the NPU. 

 
Vendor-side supply-chain risks. The confidential inference system is full of components 
(both hardware and software) that originate from third parties, such as hardware secure 
modules and hypervisors. There is a risk that these components, as provided by the vendor, 
include malicious functionality due to a vendor-targeted supply-chain attack (such as a 
threat actor manipulating the source code in the vendor’s source control, or 
replacing/tampering with hardware before its arrival and installation at a datacenter). 

● All the examples described above (flaws in the implementation of the secure enclave, 
or the AI accelerator) also apply here, except in this case, the flaws are planted. 

 
Cryptographic risks. Many components and subcomponents of the confidential inference 
system, and confidential computing in general, rely on cryptography for their security. 

● Breakthroughs in the cryptanalysis of the algorithms used to encrypt the weights, to 
wrap the weights key, to encrypt the model inputs and outputs, to encrypt the 
memory, to sign the attestation document, etc. If algorithms such as AES-GCM, 
SHA-384, or others used in confidential inference systems are cryptographically 
broken and a feasible attack can be mounted against them, this can seriously impact 
the security of these systems. This includes mathematical or algorithmic 
breakthroughs, breakthroughs in the availability of computing power, and 
breakthroughs in the availability of quantum computers. 
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● The cryptographic algorithms and protocols are misused or have implementation 
flaws, which can lead to feasible attacks. For example, if the attestation signature is 
incorrectly validated by a KMS, an attacker could replace the enclave image with a 
malicious one and pass attestation. Similarly, if the attestation signature uses a hash 
function which is susceptible to collisions, an attacker could mount an attack 
against the signature scheme and forge signatures. 

● The attestation PKI4 is compromised (e.g. the hypervisor private key is stolen or 
broken) so that attestation document signatures can be forged by an attacker. 

Introduced risks 

Risks introduced in the confidential inference service 
Insecure handling of the secure enclave. There are various ways in which an implementer 
can mishandle the secure enclave. 

● When the enclave is loaded, it should be ensured that it is a valid enclave (this is 
known as an authenticated launch). Failure to do so could allow the attacker to 
replace the enclave with a malicious enclave, which may attempt to intercept 
confidential data. 

● If the system is implemented in such a way that the enclave can be run in “debug 
mode” then the enclave running in this mode can be monitored or debugged by an 
attacker. Furthermore, if it is possible to decrypt parameters (such as model 
weights) inside a debug-mode enclave, then it is probably possible to decrypt them 
outside of the TEE as well. 

 
Code flaws or security design flaws in the secure enclave program. The secure enclave 
program may have bugs or insecure design. 

● Bugs in the parameter or data parsing in the enclave program could lead to enclave 
compromise (arbitrary code execution in the enclave) or confidential memory 
exfiltration. 

● Data parsing bugs in any client running inside the enclave (such as a KMS client, TLS 
client, DNS client, and others) could be attempted to be exploited by an attacker 
running as a server on the host. 

● Unnecessary open ports, software, or dependencies in the enclave image increase 
the attack surface and could also lead to enclave compromise. 

● Any flaw in backend software installed and running in the enclave endangers the 
security of the enclave. This includes the Linux kernel, Docker itself, base Docker 
images (“FROM”), core libraries such as PyTorch or TensorFlow, and others. 

4 Public-key infrastructure. 
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Interception of traffic to/from the secure enclave. In the confidential inference service, 
an attacker is well-positioned to intercept and/or manipulate traffic to/from the secure 
enclave (known as a MITM5 attack). 

● If some of the communication protocols to/from the enclave are unencrypted, they 
are potential targets for MITM attacks; additionally, the unencrypted portions (such 
as handshakes) of encrypted protocols could be attacked. Particularly, plain DNS 
could be attacked, and various TLS attacks could be attempted. 

● Combined with possible bugs in the enclave TLS client (such as failing to validate 
certificates) or a PKI compromise, TLS MITM could be attempted. This is a 
potentially devastating attack; it could be used, for example, to intercept and 
manipulate the communication of the enclave with an external KMS. 

 
Overly permissive policies for access to/from the secure enclave. The principle of least 
privilege dictates that access to/from the secure enclave should be confined to the 
minimum necessary. 

● For example, in AWS Nitro Enclaves, the policy file “vsock-proxy.yaml” defining an 
allow list of services that the enclave may access might be overly permissive, or not 
kept up-to-date as the enclave image is updated with new versions of the enclave 
program. 

 
Mishandling of the AI accelerator data loading mechanism.  

● If protection features like memory encryption/isolation, locking access to a specific 
CPU, disabling debugging/monitoring features on the accelerator, and so on, are 
not properly enabled by the secure enclave, then this could lead to compromise of 
confidential data while it is on the NPU. 

Risks introduced in the model provisioning procedure 
Insecure protection of KMS decryption access. Access to the decryption API of the KMS 
controlling the encryption of model architecture & weights must be securely protected to 
prevent threat actors decrypting the model. 

● If the KMS decryption access policy is misconfigured, and there is a rule allowing a 
decryption request coming from somewhere other than the secure enclave, then the 
architecture & weights can be decrypted by that source. 

● Even having a correctly-configured KMS policy, if the policy regarding who is 
allowed to edit the KMS decryption access policy is overly permissive, then whoever 
is allowed to edit the KMS policy can technically decrypt the model architecture & 
weights. 

5 Man-in-the-middle, or machine-in-the-middle. 
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● If any user allowed to access the KMS for decryption or edit the KMS decryption 
access policy is compromised (for example through a social engineering attack, 
workstation compromise, API token leak, or insider threat recruitment), then threat 
actors can leverage this access to decrypt the model architecture & weights. 

● If the cloud account hosting the KMS is compromised, or the entire cloud service 
provider holding that account is compromised, then this could similarly lead to KMS 
decryption access. 

 
Missing or insufficient KMS decryption access policy updates. From time to time, the 
KMS decryption access policy needs to be updated. Failure to do so can undermine 
security. 

● When a secure enclave is decommissioned, its access to KMS decryption must be 
removed to avoid violating the principle of least privilege. 

● In particular, if a secure enclave is decommissioned due to the discovery of a 
security flaw, extra care must be taken to remove its access to KMS decryption. 
Such cases could introduce devastating BYOVE – “Bring Your Own Vulnerable 
Enclave” attacks (see also [6]), where the threat actors leverage a decommissioned, 
vulnerable enclave in order to run arbitrary code which has access to the decryption 
of confidential model parameters. 

 
Assurance-breaking KMS placement. The KMS controlling the encryption of model 
architecture & weights is a critical component in assuring the model owner of the 
confidentiality of the model. 

● If the KMS is a cloud-native KMS, the service provider essentially has access to it – 
both physical access in the datacenter, and regular access through the network. 
They could bypass security policies and use the KMS to decrypt weights, breaking 
the confidential inference assurance that the service provider cannot access 
confidential data belonging to the model owner. 

● Moreover, any placement of this KMS in the control of any party other than the 
model owner, protected only by software-controlled policies, breaks this assurance, 
as the KMS host is technically able to decrypt weights if they manage to obtain the 
encrypted weights. 

 
Insufficient key rotation or excessive key reuse. 

● If a KMS key is compromised, then any data it was used to encrypt may be 
compromised. To reduce the risk, the same KMS key should not be used to protect 
too many copies of the model. 

● If the same key is used to encrypt too much data, it is susceptible to surpassing the 
usage limits of the particular cipher or cipher mode of operation. In particular, 
weights are very large, so this may be more likely to happen in the confidential 
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inference use case than in other common encryption use cases, especially if many 
different models’ weights are encrypted with the same key (or, with many cipher 
modes, even if the same weights are re-encrypted). 

 
Theft of encrypted model architecture & weights. Although they are encrypted, the theft 
of encrypted parameters (e.g. from a storage bucket) still has security implications. 

● Long-term stored encrypted model parameters are susceptible to “harvest now, 
decrypt later” attacks, where the threat actor steals the encrypted parameters and 
stores them until a way is developed to decrypt them. Some such ways are future 
compromises of the KMS, or breakthroughs in feasible cryptanalysis, attainable 
compute power, or availability of quantum computers. 

Risks introduced in the dev & build environment 
Compromised enclave build environment. 

● If the environment being used to build the enclave image is compromised, it can be 
used to slip malicious code into the enclave as it’s being built. 

● If the setup of the environment (including downloading of tools from third parties) 
can be tampered with, a threat actor can force building a compromised build 
environment. 

● When working with build instance templates/snapshots, care must be taken to 
avoid malware existing in the environment while the template/snapshot is 
generated. 

 
Compromised enclave dev environment. 

● If the workstations being used to develop the enclave program are compromised, 
they can be used to slip malicious code into the enclave program as it’s being 
written. 

 
Assurance-breaking build procedures. 

● If one of the confidential inference parties builds the enclave image, this may break 
the assurance to the other parties that the enclave is safe to use. This is discussed in 
detail above, in the section about the dev & build environment. 
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